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VORONOI'S ALGORITHM 
IN PURELY CUBIC CONGRUENCE FUNCTION FIELDS 

OF UNIT RANK 1 

R. SCHEIDLER AND A. STEIN 

ABSTRACT. The first part of this paper classifies all purely cubic function 
fields over a finite field of characteristic not equal to 3. In the remainder, 
we describe a method for computing the fundamental unit and regulator of 
a purely cubic congruence function field of unit rank 1 and characteristic at 
least 5. The technique is based on Voronoi's algorithm for generating a chain of 
successive minima in a multiplicative cubic lattice, which is used for calculating 
the fundamental unit and regulator of a purely cubic number field. 

1. INTRODUCTION 

In 1896, Voronoi [17] presented his algorithm for computing a system of funda- 
mental units of a cubic number field. His technique, described in terms of binary 
forms, was later restated in the language of multiplicative lattices we use the term 
fractional ideal by Delone and Faddeev [7]. The method is based on computing 
chains of successive minima in the maximal order (2 of the field K. An implemen- 
tation in purely cubic fields was given by Williams et al. [20], and improvements 
based on Shanks' idea of the infrastructure of the set of reduced principal integral 
ideals in K [13] were given in [21] and [19]. In the case of a real quadratic number 
field, Voronoi's method reduces to the well-known continued fraction algorithm for 
quadratic irrationalities given in [22] and [19]. Buchmann [1] generalized Voronoi's 
ideas to arbitrary number fields of unit rank 1 and 2. He extended his ideas to 
number fields of any rank [3, 4] and subsequently incorporated the infrastructure 
concept in [6] and [5]. 

In a real algebraic number field K of unit rank one (i.e. a real quadratic field or 
a complex cubic field), a chain of successive minima in (9 is generated by starting 
with 01 = 1 and computing adjacent minima 01 < 02 < 03 < ... in (9. Here 
0tn+1 = /nt,O7,3 where un is the minimum adjacent to 1 in the reduced fractional 
principal ideal an, = (1/0n) (n E N). Since the number of reduced fractional ideals 
in K is at most O(V/7&), where A\ is the discriminant of K (see [1]), and is thus 
finite, one must obtain a reduced fractional ideal an+1 so that an+1 = al = (9 after 
at most O(V/7A) steps, in which case 0n+1 = e is the fundamental unit of K. Thus, 
at the heart of Voronoi's algorithm lies the problem of computing the minimum 
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adjacent to 1 in a reduced fractional ideal. Specific implementations describing 
how to accomplish this, together with numerical examples, were given for the real 
quadratic case in [22], the purely cubic case in [20], and the totally complex quartic 
case in [2]. 

Stein [14], see also [15], adjusted the continued fraction algorithm of [22] to com- 
pute the fundamental unit and regulator of a real quadratic congruence function 
field. He discovered that the reduced principal integral ideals of such fields also 
obey Shanks' infrastructure concept. This successful adaptation of number field 
algebra and arithmetic to function fields motivated the authors to design and im- 
plement a version of Voronoi's algorithm for purely cubic congruence function fields 
of characteristic at least 5. Fittingly, our work began in 1996, the centennial year 
of the publication of Voronoi's original work. Improvements similar to those given 
in [21] incorporating an analogous infrastructure can likely be added and will be 
investigated in the future. 

We should point out that Mang [10] was the first to compute systems of funda- 
mental units of purely cubic congruence function fields of both unit rank 1 and 2. 
His technique is based on the Pohst-Zassenhaus method used for number fields [11, 
Chapter 5]. First, a succession of elements of decreasing norm in the maximal order 
is generated until a set of independent units is found whose cardinality is equal to 
the unit rank. Then the fundamental units are computed by essentially "extracting 
roots" from the independent units. By Mang's own admission, his technique is slow 
and is infeasible for even modest degrees and sizes of the constant field. An example 
over the ground field F5 with a generating polynomial of degree 6 that took 273 
seconds of CPU time on a Siemens mainframe using Mang's method required only 
0.04 seconds on a Silicon Graphics Challenge workstation with our algorithm. 

In adapting the ideas of [20] to purely cubic congruence function fields, we en- 
countered many similarities between the number field and the function field situa- 
tions. However, there are also significant differences between the two settings. In 
the function field setting, the role of the absolute value is taken on by a discrete (i.e. 
non-archimedian) valuation which frequently does not satisfy the inequalities and 
bounds used in the number field case. In addition, many of the number field results 
are derived from geometric concepts, such as Minkowski's lattice point theorem or 
facts about the minimum of a certain binary quadratic form over the rational in- 
tegers. In function fields, this geometry is lost, and the corresponding results need 
to be derived arithmetically. We will identify further differences between the two 
environrments throughout the paper. In short, while many of our conclusions are 
similar to results in the number field framework, the way by which we arrive at 
these facts is largely new and quite different from the derivations in [21] and [19]. 

2. CLASSIFICATION OF PURELY CUBIC CONGRUENCE FUNCTION FIELDS 

A general introduction to congruence function fields can be found in [8]. The 
purely cubic case is discussed in [10], see also p. 196 of [16]. The identities involving 
the unit group, regulator, and the ideal and divisor class numbers are given in [12] 
and [18]. 

Let k = Fq be a finite field of order q whose characteristic is not 3 and let K be 
a cubic extension of the rational function field over k in one variable. If t E K is 
transcendental over k, we denote by k(t) the rational function field and by k[t] the 
ring of polynomials over k in the variable t. K is a purely cubic congruence function 
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field over the field of constants k if there exists a polynomial D = D(t) E k[t] which 
is not a cube in k[t] such that K = k(t, p), where p E K and p3 = D, i.e. p is a 
zero in K of the polynomial F(t, y) = 3- D(t) E k[t, y]. Henceforth, we assume D 
to be cubefree in k[t] and write D = GH2, where G, H E k[t] are relatively prime 
and squarefree; then G and H are unique up to a constant factor. The algebraic 
closure (9 = k[t] of k[t] in K is a k[t]-module of rank 3 with a (t-)integral basis 
{i,p - GH2,w = p2/H = G2H} . Its unit group (9* is the (t-)unit group of 
K. (* = k* x S, where t is either trivial or the product of finitely many infinite 
cyclic groups. In the latter case, an independent set of generators of t is a system 
of fundamental (t-)units and the rank of E is the (t-)unit rank of K. The units in 
k* are the trivial units. 

Let pO, be the infinite place of k(t) corresponding to the negative degree valuation 
voo on k(t). Then the completion k(t)p. of k(t) with respect to poo is the field 
k((1/t)) of Puiseux series Z^1m ai/t' (m E Z, ai E k for i > m) over k. Denote by 
r the number of distinct extensions of the valuation voo onto K. Then r is equal to 
the number of irreducible factors of F(t, y) = y3- D in k((1/t))[y], and the unit 
rank of K is r - 1. 

Let D be the divisor group of K over k, D' the subgroup of D of divisors of 
degree 0, and 'P < DI the group of principal divisors of Klk. The divisor class 
group (of degree 0) of Klk is the factor group Co = D0/7P; its order h = #Co is the 
divisor class number of K. In analogy to D and Do, denote by U the subgroup of 
D generated by the infinite places (with respect to t) of K and by U? the subgroup 
of divisors in U of degree 0. Then E is isomorphic to P n uW. The (t-)regulator of 
K is the index R = [U : 'P n UO]. If I is the group of fractional (t-)ideals of K 
and 7H the subgroup of fractional principal (t-)ideals of K, then the (t-)ideal class 
group of K is C = IT/H; its order h' = #C is the (t-)ideal class number of K. Both 
h and h' are finite and are related through the identity 

(2.1) h = -h', 

where f is the greatest common divisor of the degrees of all the infinite places of 
K. 

Let g denote the genus of K and let deg(D) and sgn(D) denote the degree and 
the leading coefficient of D, respectively. The following theorem classifies all purely 
cubic congruence function fields. Note that k = IFq contains a primitive cube root 
of unity if and only if q _ 1(mod 3). 

Theorem 2.1 (Classification of Purely Cubic Congruence Function Fields). Let 
K = k(t, p) be a purely cubic congruence function field over a finite field k of charac- 
teristic $7 3, where p3 = D = GH2 E k[t] with G, H squarefree and gcd(G, H) = 1. 

1. Suppose deg(D) # 0(mod 3). Then poo is totally ramified in K and F(t,y) 
is irreducible over k((1/t)), so p f k((1/t)). Hence r = 1, 0* = k*, f = 1, 
and h = h'. Also g = deg(GH)-1. 

2. Suppose deg(D) _ 0(mod 3). Then poo is unramified in K and g = deg(GH) 
-2. There are two cases: 
(a) Suppose sgn(D) is not a cube in k. Then poo is inert in K and F(t, y) 

is irreducible over K, so again p ? k((1/t)), r = 1, 0* = k*, R = 1, and 
h = h/3. 

(b) Suppose sgn(D) is a cube in k. Then p E k((1/t)) and the unit group is 
nontrivial. Here, we have two further subcases: 
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(i) If q--1 (mod 3), then ) = 'I31 32 in K with fT, = 1 and fT2 = 2, 
where fT, and fp2 are the degrees of the places 'P3I and 32, respec- 
tively. F(t, y) splits over k((1/t)) as 

F(t, y) = (y _ p)(y2 + py + p2), 

where y2 + py + p2 is irreducible over k((1/t)). Here, r 2, 0* - 

k* x (e) with a fundamental unit e E (*, R = IV2(E)l = |vI(E)j/2, 
and h = Rh', where v1 and V2 are the normalized valuations on K 
corresponding to the places X13, and 32, respectively. 

(ii) If q 1 (mod 3), then Poo = ?13132I33 in K, where fT, = f -2 

f3 = 1. F(t, y) splits over k((1/t)) as 

F(t, y) = (y - p)(y - up) (y p), 

where u E k is a primitive cube root of unity. Hence r = 3, 0* - 

k* x (61, 62) with fundamental unit 61, 62 E *, 

R = det vi(6l) v2(6l) ) 

and h = Rh', where v1 and V2 are the normalized valuations on K 
corresponding to the places T, and 2, respectively. In addition, this 
is the only case where K is a normal extension of k(t) whose Galois 
group is cyclic of order 3. 

Proof. Let d = gcd(3,deg(D)). Then by [16, Proposition VI.3.1, p. 196], g = 
deg(GH) - 1 - (d - 1)/2, so g = deg(GH) - 1 if deg(D) X 0(mod 3) and g = 
deg(GH) - 2 if deg(D) 0(mod 3). 

We have poo = 13"q3 12 ... q3 r where eif=1eif = [K: k(t)] = 3 and fi is the 
degree of the place q3i for i = 1,2,... ,r. Then f = gcd(fi,f2,... ,fr). By the 
same theorem in [16] cited above, all infinite places have the same ramification 
index e = 3/d. Thus, if deg(D) # 0(mod 3), then e = 3, so r = 1, and poo = q33 in 
K, where the degree of q3 is fT = 1. Hence C)* = k*. Since U? is trivial, R = 1. 
Since f = 1, by (2.1) h = h'. 

Suppose now that deg(D) 0(mod 3). Then e = 1, so poo is unramified. In 
this case, we obtain the unit rank from [10, Theorem 3.6, p. 77]. If sgn(D) is not 
a cube in k, then again r = 1. Thus, poo = 3 in K, where fs = 3, so, as before, 
(9*- k*, UO is trivial, and R = 1. Since f =3, by (2.1) h = h'/3. 

Now assume that sgn(D) is a cube in k. If q -1(mod 3), then k does not 
contain a primitive cube root of unity, so r = 2 [10]. Hence poo = qI31I32 with 
respective degrees fi = 1, f2 = 2. Then U = (q 3l,92) and 

Ua = 1 3 T2 1 a a2 E Z, a + 2a2 = 0) = (T-2 ) 

Also P n UO = ((e)), where (e) is the principal divisor corresponding to the fun- 
damental unit 6. Denoting by fe the degree of the divisor (e), we have 0 = fe = 

vi(6) + 2V2(6), SO (6) = (?32?23)V2(c) Thus, R = IV2(E)I = vI1(E)j/2, and since 
f = 1, by (2.1) h = Rh'. 

If q 1_ (mod 3), then k contains primitive cube roots of unity, so K is a Kummer 
extension of k(t) of degree 3 and is hence normal with Galois group Z/3Z. In this 
case, [10] yields r = 3, so poo = q1332qh33 with respective degrees fi = f2 = f3 = 1. 
Then U = (q31,42A33), U o (- lIC2 q3C3 I a,, 2, a3 E Z, a,1 + Oa2 + Oa3 - 

0) = (q3Iq3 1?32q3-1). Also P n UO = ((61), (62)). If we again denote the degree of 
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( i) by f., then for i 1, 2 we have 0 = fEi = vI( i) + v2(Ci) + v3(Ci), so for the 
principal divisors (e1) and (2) corresponding to the two fundamental units cl and 
C2, respectively, (Ci) = 0PIT I)v'(i) (T23I ) .2(i Thus, 

R = |det (v (El ) v2 (2) 

V1'( 62) /2 ( 2) 
and since f 1, by (2.1) h - Rh'. 

Note that this classification differs from that of purely cubic number fields in 
that purely cubic number fields are complex cubic fields and thus always have unit 
rank 1. 

Henceforth, we assume the unit rank 1 case as described in part 2 (b) (i) in 
the theorem above, i.e. deg(D) is divisible by 3, sgn(D) is a cube in k*, and 
q -1(mod 3), so q is an odd power of a prime p -1(mod 3). Let t be a 
primitive cube root of unity in some algebraic closure of k, so 02 + t + 1 = 0 and 

- = 1. Then K(t) is a quadratic extension of K whose nontrivial K-automorphism 
is "complex conjugation" -: K(t) -? K(t) via T = t-'. K(t) = k(t,t,p) is a 
cyclic extension of k(t,t) of degree 3 for which we fix the k(t,t)-automorphism 
' K(t) - K(t) via p' = tp. Write y" for (i')' ('y E K(t)). Note that a' = a/" 
for a E K. For a E K, the norm of a (over k(t)) is N(a) = aa'a". We have 
N(a) E k(t), and if a E 0, then N(a) E k[t]. Also, a E 0 is a unit if and only if 
N(a) E k*. 

As before, let v, and v2 be the two normalized valuations on K correspond- 
ing to the two infinite places q3I and T2 of K, respectively. Since fT, = 1, the 
completion Kq1 of K with respect to q3l is isomorphic to k(t)p, = k((1/t)). For 
a = EZ=m ai/t" E k((1/t)) (m E 2, ai E k for i > r4, am :$ 0), we define 

deg (a) = -m = -vi (a), 

IaI = q-m - qJeg(ci) 

sgn (a) = a, 
0 

LaJ = ai 
i=mn 

We also set deg(O) = --oo and LOJ - 0. Note that LaJ e k[t] and la - c] I <1. 
Since the only fundamental units (up to multiples by trivial units) are c and c-1, 

we may assume without loss of generality that deg(E) > 0. Then for the regulator 
we have R = deg(c)/2. 

The valuation v1 on k((1/t)) has a unique extension to k((1/t))(t) (which we will 
also denote by v1) defined as follows: for X E k((I/t))(t), we have v1(q) = u1(q-O)/2. 
Then we can define 

deg(q) = 2deg(q5q), 2 

|I| =l S = qPIdeg(c/) - qdeg( ) 

3. IDEALS 

We summarize without proof some basics about ideals; the terminology, notation, 
and proofs are completely analogous to those for number fields. 



1250 R. SCHEIDLER AND A. STEIN 

A subset a of (9 is an integral ((-)ideal if for all ca, /3 E a and 0 E (9 we have 
a + 3 E a and Oa E a. A subset a of K is a fractional ((9-)ideal if there exists a 
nonzero d E k[t] such that da is an integral ideal of (9. If a, , a2 ,. l E K, then 
the set a = { Ojai +02a2 + ... +ac1O1 IOi E 0 for 1 < i < 1} is a fractional ideal with 
generators a ,a2 , al; write a = (a,c ,Y2,... , l) If a,, 2.... ,al E (, then a 
is an integral ideal. A fractional or integral ideal a is principal if a = (a) has one 
generator. 

Henceforth, we assume all ideals (fractional and integral) to be nonzero, i.e. 
the term "ideal" will be synonymous with "nonzero ideal". Then a multiplication 
is defined on the set of fractional ideals as follows. If a = (a,, a2,... Icar) and 
b = (li, .2,.. I) are fractional ideals, then the fractional ideal ab is defined to 
be the fractional ideal generated by asijj (1 < i < r, 1 < j < s). For integral ideals 
a, b, we say that a divides b if there exists an (integral) ideal c such that ac = b. 
We write a I b. Then a I b if and only if b C a. An ideal a is primitive if it has no 
nontrivial polynomial divisors, that is, if f E k[t], f $& 0 with (f) I a, then f E k*. 

Proposition 3.1. Every integral ideal of (9 is a k[t] -module of rank 3. Specifically, 
every integral ideal a has a k[t]-basis of the form {1, it, zJ} where 

I E k[t] is monic, 

(3.1) ,u = mO + mip, 

Iv = no+flnp+fn2W, 

with mo, ml, no, ni , n2 E k[t] and mln2 $0 O. 

Here, I is unique and is the monic polynomial of minimal degree in a; write 
I = L(a). Every polynomial in a n k[t] is a multiple of L(a). 

Corollary 3.2. Every fractional ideal of (9 is a k[t] -module of rank 3. More specif- 
ically, every fractional ideal a of (9 that contains 1 has a k[t]-basis of the form 
{ 1,[i,lv} where 

(3.2) i = (mo + mip)/d, 
IJ = (no + nip + n2W)/d, 

with mo,m1,no,n1,n2,d E k[t] and dm1n2 $0 O. If gcd(mo, ml, no, ni, n2, d) = 1, 
then da is a primitive integral ideal with L(da) = sgn(d)-1d. 

If {A,,, vz} is a k[t]-basis of a fractional or integral ideal a of (9, write a = [A, ,u, v]. 

Proposition 3.3. Let a = [AlIupI , vi], b = [A2qi 2,1V2] be fractional or integral 
ideals. Then a = b if and only if there exists T E G13(k[t]) (i.e. det(T) E k*) such 
that 

( l ) = AT2( ) 

The (t-) norm of a fractional ideal a = [A, ,u,z'J] is N(a) = sgn(det(T))-1 det(T) E 

k(t)*, where T E G13(k(t)) is such that 
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By Proposition 3.3, N(a) is independent of the choice of bases for a and (9. If a is 
a fractional ideal of (9 that contains 1 with a basis {1, ,u, zJ} as given in (3.2), then 

(3.3) N(a) = a d2M for some a E k*. 

The norm of an integral ideal a is N(a) = L(a)3N((I/L(a))a) E k[t]. If a = 

[L(a), ,i, z] where [t and v are as in (3.1), then N(a) = aL(a)nlm2 for some a E k*. 
We have N(ab) = N(a)N(b) for any fractional or integral ideals a, b of (9. The 
absolute norm of a fractional or integral ideal a is IN(a)I = qdeg(N(a))* 

Proposition 3.4. If a is an integral ideal, then L(a) I N(a). If a is primitive, then 
N(a) I L(a)2. 

The (t-) discriminant of a fractional or integral ideal a = [A, ,u, v] is the quantity 

A(a) = det A " A/ A it E k(t) if a is a fractional ideal, 

\ v VJ/ VJ// J k[t] if a is an integral ideal. 

By Proposition 3.3, A(a) is independent of the choice of k[t]-basis of a. The dis- 
criminant of 9 = [1,p,w] is A = -27G2H2. We have 

(3.4) A(a) = a2N(a)2A for some a E k*. 

4. MINIMA AND REDUCED IDEALS 

If a is a fractional ideal and a E a, a $& 0, then a is a minimum in a if for 3 E a 
with 3 $& 0, 101 < lal and 1f'/ < ?a&I imply E k*Ea, i.e. : and a differ only by 
a factor that is a trivial unit. a is reduced if 1 E a and 1 is a minimum in a. An 
integral ideal a is reduced if the fractional ideal (1/L(a))a is reduced, i.e. if and 
only if L(a) is a minimum in a. We show that reduced ideals exist and establish 
certain properties. 

Theorem 4.1. (9 is reduced. 

Proof. Let a e (9, a $& 0, with lal < 1 and la/I < 1. Then l'a"a"1 = la/ 12 < 1, So 

JN(a)l < 1. Since N(a) E k[t] and N(a) $& 0, we must have IN(a)l = 1, so ay is a 
unit. Also lal = la/I = 1, so a is a trivial unit, i.e. a e k*. D 

Proposition 4.2. Let a be a fractional ideal of (9 and let 0 be a minimum in a. 
Then r,0 is a minimum in a for every unit rq E e7*. 

Proof. Let r1 E C)*. Clearly, rq0 E a. Let a E a be nonzero with lal < lr0l and 
ka'I < Jl'0'l. Set 3 = ar1-; then 3 E a, 3 $& 0, 101 < 101, and 1f'l < 1'0. Since 0 is 
a minimum in a, we have 3 E k*0, hence a E k*rqO. a 

Corollary 4.3. Every unit in (9 is a minimum in (9. 

Lemma 4.4. Let a be a reduced fractional ideal and let a = a + bp + cw E a 
(a, b, c E k(t)). If lal, lbpl, 1cwl < 1, then b = c = O and a = a E k. 

Proof. lal < max{lal, lbpl, lcwl} < 1, and similarly 

la /12 = 1la/a/l = la2- bcpw + c2w 2 _ abp + b2p2-acw < 1. 

Since l is a minimum in a, a E k. a 
Theorem 4.5. If a is a reduced fractional ideal, then JA(a)l > 1, i.e. JN(a)l > 



1252 R. SCHEIDLER AND A. STEIN 

Proof. Let {1, ,u, zJ} be a basis of a as given in (3.2). By first subtracting a suitable 
k[t]-multiple of it from zJ and then subtracting suitable polynomials in k[t] from 
it and zJ, we may assume that in, < Im1 and Imol,Inol < Idl. Since it is not 
constant, by Lemma 4.4, lmlpl > Idl. From (3.3), we obtain IN(a)l = Imin2 /JdJ2, 
so by (3.4), A(a)j = jmin2V'I/Id 2 = min2pWj/jdj2. 

Case 1. n2wj > Idl. Then IA(a) > 1, and the theorem is proved. 

Case 2. In2wI < Idl. Then by Lemma 4.4 lnlpl > Idl. Assume that JA(a)1 < 1. 
Then 

(4.1) 1< fliP mip M 
- d VA (a)~ d 

d d |n2W - n2W 

Let 

(4.2) qmip 2 

ni ~d d 

where m, n, I E N. We claim that 

(4.3) 0 < m < n <l. 

To see this, note that in, < Im1i implies 0 < m. Since Inipl/ldl > 1, we have 
imipl/ldl = Iminipl/Inidl > Imil/Inil, so m < n. Finally, from (4.1), we obtain 
imipl/ldl < jdj/jn2wj, so n < 1. 

Let ni/m, = ? rit- (ri E k for i E N, rm $& 0, ri = 0 for i < m). Set 

( rj+? ri rIi- ... ri-n+l 

r1+2 rj+i ri ... ri-n+2 

R= r1+3 r1+2 rj+i ... ri-n+3 E Matnx(n+l)(k) 

K rl+n rl+n-i rl+n-2 ... ri 

and let (c ,c?+i,c?1+2,... C?l+n)t E kn+? be a nonzero solution of 

R (.) = (.' 

Set c = cultl + c_1+1tlil + * + c?l+ntl-n. By (4.3), c E k[t]. 

Now let (ni/mi)c = ZimI sit-' (si E k for i > m - 1, smI $1 0). Then 

/ \ rj+ ri r .-i .. rin+l C 0/ 

S2 r1+2 rj+i r1 ... rI-n+2 C01+1 

S3 r1+3 r1+2 rj+i ... ri-n+3 C_1+2 = 

Sn rl+n rl+n-, rl+n-2 ... ri+3 C1-+n j 

so~~~~~~O o 

so4) c r sit-i + E sit 
i=m-I i=n+l 
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Set b = -L(ni/mi)cJ = -S,+mtl-m - SI+m1t1-m-1 - - so. Then by (4.3), 
b E k[t], and by (4.4) 

(4.5) |Lc+b < qfl 

Finally, set a =-L(bmo + cno)/dj E k[t] and let a = a + b,ut + cv E a. Then 

a = I 
((da + bmo + cno) + (bm, + cnl)p + cn2W) 

and from (4.2) and (4.5) 

da + bmo + cno bmo + cno bmo + cnol 1 
d d [dj 

(bmi + cnl)p = ni Mp n 

d - +Ml d 
cn2W 1, 

where the last inequality uses deg(c) = 1. By Lemma 4.4, a E k. So in particular 
c = 0, contradicting (c-1, c-l+1.... , c-l+n) + (0, 0 ... , 0). Hence the assumption 
that JA(a)l < 1 is false. IN(a)l > 1/JV'XJ follows from (3.4). D 

Corollary 4.6. If a is a reduced integral ideal, then JL(a)J < IVS1 and IN(a)l < 
1AI. 

Proof. Since a is reduced, b = (1/L(a))a is reduced, so by Proposition 3.4 and 
Theorem 4.5, IL(a)2 > IN(a)l = JL(a) 3IN(b)l > JL(a)'3/AvN1, so IL(a)I < IVI 
and, again by Proposition 3.4, IN(a)l < IL(a)12 < JAI. D 

Corollary 4.7. If a is a reduced fractional ideal and a E a is nonzero, then 
IN(a)l > 1/JAI. 

Proof. Let d E k[t] be of minimal degree so that b = da is an integral ideal. Then 
da E b, so (da)(d2a'a") = N(da) = d3N(a) E b. Hence L(b) = d I d3N(a), so 
IN(a)l > 1/IdI2 = 1/IL(b)12 > 1/JAI by Corollary 4.6. D 

5. ADJACENT MINIMA 

Let a be a fractional ideal and let 0 E a be a minimum in a. An element q5 E a 
is a minimum adjacent to 0 in a if 

(Ml) q5 is a minimum in a, 
(M2) 101 < 101, 
(M3) for no a E a do we have 101 < lal < 101 and la'1 < O'l. 

Note that conditions (Ml) and (M2) imply lq'l < 10'l, as 0'1 < lq5'l would yield 
0 E k*q by (Ml) and hence 101 = 101, contradicting (M2). 

In the number field setting, the existence of adjacent minima is easily seen. Sim- 
ply expand the cylinder of elements (x, y, z) E1 R 3 with lxl < 101 and y2 + Z2 < 10',01 
in the x direction until the next point q5 E a is encountered. Minkowski's lattice 
point theorem guarantees the existence of such an element q5 provided the volume 
of the cylinder is sufficiently large. In our function fields, we need to establish the 
existence of adjacent minima analytically. 

Theorem 5.1. Let a be a fractional ideal and let 0 E a be a minimum in a. Then 
a minimum q adjacent to 0 in a exists and is unique up to a tTivial unit factor. 
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Proof. Consider the set H(0) = {a E a I lal > 101 and la'l < 0'l}. Then H(0) 
is nonempty, as 0O E H(0). The set {deg(a) I a E H(0)} is a nonempty subset 
of 2, and is bounded below by deg(0). By the Well-Ordering Principle, it has 
a smallest element, so there exists a E H(0) with lal minimal. Then the set 
{deg(N(a)) I a E H(0), lal is minimal} is also a nonempty subset of Z, and is 
bounded below by - deg(A) by Corollary 4.7. So it has a smallest element as well. 
Let b E H(0) be such that 101 is minimal and N(q) is such a smallest element. 
Then 

a) q51 > 101 and q5'l < 10'l, 
b) if a E a with lal > 101 and la'l < 10'l, then lal > 101, 
c) if ae E a with lal = 101 and l'l' < 10'l, then l'l' > lq'l. 

Condition a) holds because q5 E H(0). Property b) follows from the minimality of 

151. To see c), suppose lal = 101 and la'l < 0'l. Then by a), lal > 101, so a E H(0). 
By minimality of IN(0)1, IN(a)l > IN(0)1, so with lal = 101, we obtain la'l > Iq'l. 

Now conditions (M2) and (M3) for adjacent minima follow from properties a) 
and b), respectively, so we only need to show that q5 is a minimum in a. Let a E a, 
a 0 with lal < 101 and la'l < lq'l. By a), la'l < 0'l. Suppose lal < 101; then 

e Ek* as 0 is a minimum in a. But then 10'1 = la/I < 10'1. So lal > 101. By 
b), lal > 101, so lal = q51. Hence by c), c'xa > 10/1, so la/I = q5'1. Thus we have 

lal = 101 and la/I = 10/1. 
Let a= - (sgn(a)/sgn(q))q; then E e a, 101 < 101 and 1f'1 < max{&la/I, q5'1} < 

10'1. Suppose ,3 $ 0; then by (M3), 101 < 101, so E k*0. But then 10'/ = 1b't < 1'0. 
So we must have 3 = 0, and thus a e k*q. Therefore, q5 is a minimum in a. 

To see that q5 is unique up to a factor in k*, let b1, 02 be two minima in a 
adjacent to 0. Then both q51 and q2 are minima in a by (MI), and 101 < |1|, 1q21 

by (M2). Suppose 'Il I < 1k21; then by (M3), I > IO'1, so since q1 is a minimum in 
a, 0 E k*1. But then I0 = 1bli > I0 . Similarly we can rule out I l > 1021. Hence 

1= 2 1 Assume without loss of generality that I |/) < I O/ 1; then q51 E k*q02 D 

We will henceforth speak of the minimum adjacent to an element in a fractional 
ideal, keeping in mind that it is only unique up to a trivial unit factor. 

Let a be a fractional ideal and let 0 = 01 be a minimum in a. A sequence (On)nEN 

of elements in a where O1n+1 is the minimum adjacent to O1n in a (n E N) is a chain 
of successive minima in a. Note that by (M2), 0?nI < IOn+ I, and thus by (MI), 

l0n/ > |0n/+1 for n E N. 

Proposition 5.2. Let a be a reduced fractional ideal, 0 a minimum in a, and a* 
(1/0)a. Then a* is reduced. 

Proof. Let a E a*, a $4 0, lal < 1 and la'I < 1. Then: = 0 E a, 3 54 0, 101 < 101 
and 1f'1 < 10'1, so E kE0. Hence a = 3/0 E k*. D 

Proposition 5.3. Let a be a reduced fractional ideal, 0 a minimum in a, a* = 
(1/0)a, so a* is reduced by Proposition 5.2. Let 9* be the minimum adjacent to 1 
in a*. Then 00* is the minimum adjacent to 0 in-a. 

Proof. For brevity, set / = 00*. Clearly / E 0a* = a. To show (MI), let aC E a, 
a =$ 0 with lal < 101 and &a/I < 15'1. Let 3 = ca/0; then f3 E (1/0)a = a*, 
3 =$ 0, 101 ' 10*1 and 1f3' < 1(0*)/IL Since 9* is a minimum in a*, 3 E k*0*, so 
a = 30 E k*E . So q5 is a minimum in a. Now since 10*j > 1, 101 > 101, so (M2) 
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holds. Finally, suppose there exists a E a with I0 < I'a1 < lI and I 'l < I0'. Then 
0 = ai/0 E a*, 3 $& 0, 1 < 101 < 10*1 and lo'l < 1, contradicting (M3) for the 
minimum 9* adjacent to 1 in a*. So (M3) is also satisfied. D 

6. OUTLINE OF THE ALGORITHM 

The basic idea for our algorithm is the same as in the unit rank 1 case of number 
fields. Start with a reduced fractional ideal a - a1, for example a1 = (9, and define 
a sequence of reduced fractional ideals an and elements 0n E a (n E N) as follows. 
Let jU be the minimum adjacent to 1 in an and set an+1 = (1/1un)an Then an+1 
is reduced by Proposition 5.2. If we set 

n-I 

(6.1) 01=1, = =7 i forn >2 
i=l1 

then an = (1/0n)a. Since On+1 = ILnOn, On+1 is the minimum adjacent to On in a 
by Proposition 5.3. Thus we have a chain 

(6.2) 01 = 1, 02, 03, 

of successive minima in a. The following proposition shows that the chain (6.2) in 
fact contains all the minima in a of nonnegative degree. 

Proposition 6.1. Let a be a reduced fractional ideal and let 0 be a minimum in a 
with 101 > 1. Then there exist n E N and a E k* such that 0 = aOn. 

Proof. The sequence (10nl)nfl is strictly increasing and unbounded. Hence there 
exists n E N with l0n? < 101 < lOn+11 If 10'I < I0'l, then 0n E k*0 and our claim 
is proved. If I0' < IIn , then l0?n <? 10 < IOn+1I and I0|' < I0$n imply IOnI = 101 by 
(M3), so 0 E k*0O by (M1). D 

Corollary 6.2. IN(0)l < IVA for every minimun 0 E ( with 101 > 1. 

Proof. If a1 = (9, then we have IN(0n)l = 1/IN(an)I for all n E N, and the corollary 
follows from the previous proposition and Theorem 4.5. D 

In particular, the fundamental unit 6 must appear in the sequence (6.2) by 
Corollary 4.3. More exactly, since e is the unit of smallest positive degree, the first 
index n > 1 such that N(0n) E k* satisfies On E k*E. If 1 E N is minimal such that 
01+1 E kE (I E N), then al,+ = a1, ,u1+1 = t,i (possibly up to a constant factor), 
and in fact Lm1+i = pi for m,i E N (again, possibly up to a trivial unit factor). 
Hence the sequence (6.2) is equal to 

1, 02, ... , 01, 6, 02,... , 601, 62 202 . 3 

and contains all nonnegative powers of 6. We call I the period of e (or of K). 
Thus, to find 6, we need to compute a sequence of elements (un)nclre where 

a1 = (9, an+1 = (1/1un)an, and jun is the minimum adjacent to 1 in an (n E N). 
We terminate as soon as N(01+1) E k*, where 01+1 is defined as in (6.1), at which 
point e = 01+1 and R = deg(01+1)/2. Hence the.key portion of our algorithm is a 
method for generating the minimum ,u adjacent to 1 in a reduced fractional a. This 
is accomplished by applying a sequence of suitable unimodular transformations to 
the pair (b, in), where {1, /, i0} is a k[t]-basis of a, until a basis {1, ,u, zJ} is obtained 
such that it is our desired minimum. We call a basis that contains ,u a reduced basis 
of a. Details on how to compute a reduced basis are given in section 7. 
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Before we present our unit and regulator algorithms, we give a simpler condition 
that determines exactly when N(0n) E k* and avoids computing norms. 

Proposition 6.3. Let a = (1/0) = [1, it, v], where 0 is an element of the chain 
(6.2) and ,u = (mo+mlp+m2W)/d, I = (no+nlp+n2W)/d with mo,ml,m2,no,nl,n2,d 
k[t] and gcd(mo,ml,m2,no,n1,n2,d) = 1. Then N(0) E k* if and only if d E k*. 

Proof. Since N(a) = sgn(N(0))/N(0), we have N(0) E k* if and only if N(a) = 1, 
which is the case if and only if a = (9, or equivalently ,u, zJ E (9. But because of the 
gcd condition, it and zJ are in (9 if and only if d E k*. D 

We are now ready to present our algorithm for computing the fundamental unit 
of K. In each iteration, we have a basis {1, jun = (MO + m1p + m2W)/d, Ivn = 
(no + nip + n2W)/d} of our current fractional ideal an = (1/On), where On = 

(eo + elp + e2W)/f (mi, ni, d, ei, f E k[t] for i = 0, 1, 2). This basis is replaced by 
a reduced basis (also called {1, un, Zni}). Then 0n is updated to On+l = ltnOn, and 
since an+l = (1/,un)an, jun and ZJn are replaced by 1Un+l 1/=lLn =A'nAn/N(An) 
and V"n+l = V/n/fin = n1un+l?, respectively. Initially, 01 = 1, pi = p, and vi/ = W. 

Using Proposition 6.3, we terminate the algorithm as soon as we encounter a basis 
denominator d that is a constant. 

Algorithm 6.4 (Fundamental unit algorithm). 
Input: The polynomials G, H, where D = GH2. 
Output: eo, eI, e2 E k[t], where c = eo + eIp + E2W is the fundamental unit of K. 
Algorithm: 
1. Set eO = f = 1, el = e2= 0; mO = M2 = no = ni = 0, ml = n2 = d = 1. 
2. Repeat 

(a) { Reduce the basis } 
Use Algorithm 7.1 below to replace mO Ml, m2, no, ni, n2, d by the coeffi- 
cients of a reduced basis. 

(b) { Update On } 
(i) Replace 

(eo ( eomo + (elm2 + e2m)GH 

el by eom1 + elmo + e2m2G 

e20 V eom2 + elmlH + e2mo 
f2 

by df/ 

(ii) Compute g = gcd(eo, e1, e2, f). For i = 0,1, 2, replace ei by ei/g and 
f by f /g. 

(c) { Update ft and zJ } 
(i) Set 

aO = mO-mlm2GH, 

a, = m2G-mmom, 

a2 = m 2H-mOm2, 

b = mg +m3GH2+m 3G2H-3momlm2GH. 

(ii) Replace 

/ mO ( aod 

Ml m1 by a1d 
(M2E a2d/ 
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(iii) Replace 

( no ( aono + (aln2 + a2n,)GH 
ni J by aon1 +a1no +a2n2G 

\n2 / aon2 + ainH + a2no / 
(iv) Replace d by b. 
(v) Compute h = gcd(mo, m,m2,Mnno,nl,n2,d). For i = ,1, 2, replace 

mi by mi/h, ni by ni/h and d by d/h. 
until d E k*. 

Since the computation of e requires I reduction steps, where I is the period of 6, 

it is desirable to have an upper bound on 1. In general, I can be quite large. 

Theorem 6.5. For the period I of 6, we have I < 2R = deg(E) = o(qdeg A/2-2). 

Proof. For n E N, let An = deg(On) E No. Since 61 = 0 and An strictly increases 
with n, a simple induction argument shows n > n -1. Hence I < deg(01+1) = 
deg(E) = 2R. From the Hasse-Weil Theorem (see [16, Theorem V.1.15, p. 166, and 
Theorem V.2.1 , p. 169]), we can infer that (\/# - 1)2g < h < (V/# + 1)2g. Hence, 
using (2.1) and the identity g = deg(V'N) - 2 for the genus g of K (see Theorem 
2.1), we obtain R < (V/- + 1)deg(A)-4 - O(qdeg(A)/2-2) El 

Corollary 6.6. 61E = O(qq g(A)/ ). 

Corollary 6.6 shows that the coefficients eo, e1, e2 of 6 can be so huge that it 
might be infeasible to compute or even simply write down the fundamental unit for 
large values of IAI. For this situation, we modify Algorithm 6.4 to compute only the 
regulator R of K. We show in the next section that if it = (mo+mIp+m2w)/d is the 
minimum adjacent to 1 in some reduced fractional ideal, then deg(,) = deg(mo/d) 
(see Lemma 7.4), so we only need to add deg(mo) - deg(d) in each iteration to 
update the regulator. After step 2 of the algorithm below, the degree of e is stored 
in R, so we need to divide by 2 in step 3. 

Algorithm 6.7 (Regulator algorithm). 
Input: The polynomials G, H, where D = GH2. 
Output: The regulator R of K. 
Algorithm: 
1. Set R = 0; mO= m2= no = ni = 0, ml = n2= d = 1. 
2. Repeat 

(a) Use Algorithm 7.1 below to replace mO, ml, i2, no, nl, n2, d by the coeffi- 
cients of a reduced basis. 

(b) Replace R by R + deg(mo) - deg(d). 
(c) (i) Set 

aO = mO- 2MlM2GH, 

a, = mi2G - mom1, 

a2 = m 2H-mOm2, 

b = m3 + m3GH2 + m3G2H 3momlm2GH. 

(ii) Replace 

z mO \ aod \ 
M( by | ald | 
< M2 ,\\ a2d 
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(iii) Replace 

/ nO 0 ( aono + (amn2 + a2n,)GH 
) by aon, +a1no +a2n2G 

\ n2 / V aon2 + a,niH + a2n / 
(iv) Replace d by b. 
(v) Compute h = gcd(mo,mi,m2,no,ni,n2,d). Fori = 0,1,2, replace 

mi by mi/h, ni by ni/h and d by d/h. 
until d e k*. 

3. Replace R by R/2. 

7. COMPUTATION OF A MINIMUM ADJACENT TO 1 

The above discussion shows that the task of finding e (or R) reduces to the 

problem of computing a reduced basis of a reduced fractional ideal a. In particular, 

we need to be able to generate the minimum adjacent to 1 in a. Before we illustrate 

how to do this, we require several somewhat technical definitions. Here, we let 

ourselves be guided by the terminology and techniques in [20]. As mentioned before, 

in the number field case, these concepts are geometrically motivated. While they 

lose their geometric significance in the function field case, they can nevertheless be 

used to accomplish our goal. 

Henceforth, we exclude the characteristic 2 case, that is, we require k to be a 

finite field of characteristic at least 5. Let a = a + bp + cw e K with a, b, c e k(t). 
We define the quantities 

= bp?cw = a-a, 

(7.1) = bp-cw 2t /1 ) 

= 2a-bp-cw = a' + a", 

where we recall that t is a primitive cube root of unity. Then 6fca+go = f &a + g9, 
rif c+g/3 = fric ?77c , g f c+go = f(,O +?g for any a,,3 e K and f,g e k(t). Simple 
calculations show 

1 1 2+2. (7.2) Ca= -(3& + cj, a'a" = -(377 ? (i). 2 4 
and if a = [1, ,u, v] is a fractional ideal, then 

(7 3) det ( 877p = (,L 77v - (v 77tj 2 V--a) 

so this determinant is independent of the choice of basis of a. 

We now give the algorithm that on input of a basis of some reduced fractional 

ideal produces a reduced basis of that same ideal. 

Algorithm 7.1 (Reduction algorithm). 

Input: ,A, i>, where {1, ,A, iv} is a basis of some reduced fractional ideal a. 
Output: ,u, v, where {1,, v } is a basis of a such that 1 < 1, Kv < 1, 1> 

I G 171k I < 1 < 171vI 
Algorithm: 
1. Set = A, v=i. 
2. If J4A < 1LvI or if 1'1, = 1LvI and, replace 

(M) by (2-1 0 )( ) 



VORONOIS ALGORITHM IN CUBIC FUNCTION FIELDS 1259 

3. If 1qp I > 1t77v 

(a) while Lq/t.J = Lr/rqvJ, replace 

()by (2 L1&)v 
(v ) (- d/e )(V) 

(b) Replace 

(v) bY (21 Ldg j)( )b 

(c) If 171L I = I77 v, replace 

(At) by (O 1 a)(v) 

where a = sgn(rqi)sgn(7v,)- 
l k*. 

4. (a) While rqv I < 1, replace 

(v 
by 

( L/v )(V) 

(b) While 17,1L > 1, replace 

(A) by ([77nt,J A1(t 
( I 0 )(V) 

5. If I(,l I > 1, replace ul by v-(1/2) LQt. 
If lEavl > 1, replace v> by M- (1/2) L4v_! 

Proposition 7.2. Algorithm 7.1 terminates and produces the output specified 
above. 

Proof. It is easy to see that all transformations of ,u and Iv in steps 2, 3 and 4 
maintain a basis {1, jp, v} of a, because the basis transformation matrices all have 
determinant 1. 

We claim that after step 3, we have 

(7.4) 1441 > IG II Inp,l 
< I'q1>l 

This can be seen as follows. Since step 2 replaces ,t by v and M by -I,u we have 

If,Ij > VIv, or |(,| = I|vL and |j7| > I|v after step 2. If at the beginning of step 
3, rqA < Lvr, -then from the previous step I > Ij, so conditions (7.4) hold and 
step 3 is skipped. 

Assume now that Iqm, I > lrqv , so step 3 is entered. Consider step 3 (a) and set 

a = v and f = t(i/(v - /1, so a and : are obtained by applying the linear 
transformation of step 3 (a) to At and v. Then 

In3=I 77V 77 <I vI = Ina I, 

n = IL8 V-8 < inv = I?7caI 

Hence, l I and 17v, strictly decrease in each iteration, so the loop must terminate 
at the latest before Ivvm I < 1 for otherwise by (7.3) 
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contradicting Theorem 4.5. After step 3 (b), we have 140 < Jf,= IJa and 

because I -Lny/Iv > 1 and ILT1v]nv- qll < lvl. Finally, observe 
that in step 3 (c), a = Lr1,/r1,J. If we set a = ,u- av and 3 = v, then as before 
J% 'J 1< rl, and since I1,I > ILv4, we have I aI I 1 ac1 = '1, > Il4 = 1v So 
step 3 achieves the inequalities (7.4) above. 

In step 4, we ensure that l71,j < 1 < l7v . From (7.4), it is clear that at most one 
of the while loops in step 4 is entered. Consider first the case lqv I < 1, i.e. case 4 
(a). Set a = v and ,B = t(,/v>v- M,. Then 

IUI < IGvl = lG(al Il = l W(8 7v tzp > lqv I = I,% 1 Iqc, = Iqv I < 1 

so inequalities (7.4) and the condition 7< 1 are maintained throughout the loop. 
Furthermore, lrv I strictly increases in each iteration, so the while loop will terminate 
with the desired basis. In step 4 (b), if we set ,B = At and a = Lqv/r18,qj - v, then 

1n1< 
qtz=la, 

(l=lnH M-v > ly 4l1d nl,l 

so again (7.4) and the condition l?vI > 1 are maintained throughout the loop. In 
addition, l71p strictly decreases in each iteration, so in this case the while loop also 
terminates with the desired basis. 

Finally, step 5 achieves I 8 1, (Ivl < 1 while preserving the inequalities obtained 
in the first 4 steps. To see this, let a = u - (1/2)[(.J; then by (7.1) 1Jal = 

Kt- - 1 I = Kt -L(] I < 1. Similarly for v. F 

We proceed to prove that the basis of Algorithm 7.1 is indeed a reduced basis, 

Lemma 7.3. Let a e K. Then la'l < 1 if and only if J%J < 1 and J&.l < 1. 

Proof. If J%J < 1 and J4.l < 1, then from (7.2) la',2 < max{f 1% 2,1cj2} < 1. 
Conversely, if la'l < 1, then 1J4l = la' + a"I < la'i < 1, and from (7.2) lal2 = 

14a'a" - (a2l < 1. 

Lemma 7.4. Let a = a + bp + cw e K with lal > 1 and la'l < 1. Then ll= 
J4oj = lal = lbpl = lcwl. 

Proof. By Lemma 7.3, we have 1% I < 1 and I < 1. From Ia I > 1 and I4J = 

13a - aI < 1, it follows that Ia I = Ia . The inequality IJaI = 12a - a < 1 implies 
J(l = lal > 1. Finally, from J4.l > 1 and J%J < 1, we obtain lbpl = lcwl = J.al- F 

Theorem 7.5. Let {1, A, v} be a basis of a reduced fractional ideal a such that 

JKt1 < 1b JCvl < 1, JtlI > Jfvl, lqtzl < 1 < lqvl. Then At is the minimum adjacent to 
1 in a, so {1, 4,u} is a reduced basis of a. 

Proof. Let 0 be the minimum adjacent to 1 in a, 0 = I +?m, + nv with l, m, n e k[t]. 
We wish to show that I = n = 0 and m e k*. Since I0'l < 1, we have Jol < 1 and 
l2?ol < 1 by Lemma 7.3. By the same lemma, At'l < 1, as J4.l < 1 and <7,2 < 1. 
Then lAl > 1, as otherwise At e k. Hence lAl > 101, since otherwise 1 < JIK < 101 and 
At'l < 1, contradicting (M3) for 0. 

If n = 0, then m $8 0 as 0 ' k[t], so Iml > Inj and lm,l > lnrvl. If n $8 0, then 
1 > lqo I = ImrqA + nruvj with IrnvI > 1 implies Im71H| = Irnv,. Thus, InI < I rnuw = 
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lmr1j < Iml, so Iml > Inr and jm,l > jnr,l as well. It follows from Lemma 7.4 
that 

101 = J4o = jmr ? + nrvlI = jm4, I = Im,l > Im0l, 

so jml < 1. Thus, 1 > jml > lnl, so n = 0 and m k*. 
Now 1 > lIo = Il+mtz = 121 + tz, so since 1 < 1, Il < 1, so I = 0 and 

0= m, E k*,u. E 

The coefficients of the basis generated by Algorithm 7.1 are small: 

Theorem 7.6. Let a be a reduced fractional ideal and let {1, A,, v} be the basis of a 
produced by Algorithm 7. 1. Let ,u = (mO + mp? + m2w)/d, v = (no + nip + n2w)/d 
with mO,m1,m2,no,n1,n2,d e k[t] and gcd(mo, m1,m2,no,n1,n2,d) = 1. Then 

jdl < IdAl = Imol = lmlpl = m2w < lv'Al and Inol,lnlpl,In2WI < K 41, so 
imil < lwl, Inil < lwl, IM21 < IpI, and In2l < IPI- 

Proof. From Lemma 7.4, Idl < IdAl = 1d<1 = Imol = lmlpl = Jm2wJ. Now by 
Corollary 3.2, da is a reduced integral ideal with L(da) = sgn(d) 1d. By Proposition 
3.4, d3N(a) = N(da) I d2, so IdN(a)l < 1. From (3.4) and (7.3), we obtain 

Ix/ > ?dN(a)\/Al = dVA(a)l = ld(Q,tqv >- ,>r1U)1 > 1?[11, 
as I A1 > lI > and l71,| < 1 < l,vl. 

Since 14,j > lJvj, we have 1\' > lmip + m2wl > lnlp + n2wI. Also, IA(a) = 

IAh71I > l7v , so 1\' > d A(a)I > Idr1v = In1p-n2wI. Hence Inipl,Hn2wl < 

Finally, l(vl < 1 implies 12no - nlp - n2wlI < dI< I \/, so InoI < I-,AI 
The rest of the inequalities follow from the identity pw = V'. 

8. IMPLEMENTATION 

Our algorithm was implemented using the computer algebra system SIMATH 
developed by the research group of Professor H. G. Zimmer at the Universitait des 
Saarlandes in Saarbriicken, Germany. All our computations were done on a Silicon 
Graphics Challenge workstation. Since much of our method required manipulation 
of Puiseux series, it was necessary to write routines for arithmetic of power series. 
For this purpose, we had to use truncated series as approximations for our Puiseux 
series, in analogy to using rational approximations when computing with real num- 
bers. However, in contrast to Voronoi's algorithm in number fields, we were able to 
establish conditions to check throughout the algorithm whether our approximations 
were sufficiently accurate and increase the accuracy if necessary. 

Define an approximation &(n of precision n E N0 to an element a = m ai/ti E 
k((1/t)) to be &n = Z-Enm ai/ti. Then la - &nl < q-n. An approximation to a of 
degree 0 is simply the principal part [aj of a. We used the method for extracting 
cube roots as described in [9] and implemented by Mang in [10] to compute ap- 
proximations p and c2 of precision J of the basis elements p and w, respectively, at 
the beginning of each unit or regulator computation. Here, a = deg(A) turned out 
to be always sufficient. Examples show that reducing the value of a to deg(A)/2 or 
even deg(A)/4 often still produced correct results, but computation times improved 
only marginally with smaller precision. 

Since the polynomials and series approximations in our algorithm generally had 
few zero coefficients, they were given in dense representation; that is, as a list start- 
ing with the degree of the polynomial or the series, followed by the coefficients in 
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order of decreasing degree of monomial. The main difficulty in our implementation 
was the computation of the principal parts of quotients as required in steps 3 - 5 of 
Algorithm 7.1. Here, an approximation 'p of 'p 

= (mlp + m2w)/d was represented 
as a pair (a,p, d) where a. = ml 3 +?m2C23; similarly for (v, 7rt, and qv. To compute 
a quotient, [(/jlv for example, we performed "division with remainder" on the 
quantities a. and av = nl1 + n2flW. It is easy to check whether this gives the 
correct result: 

Lemma 8.1. Let a,/ e k((1/t)), / $8 0. Let &m be an approximation of a of 
precision m and let /n be an approximation of /3 of precision n. If m > - deg(3) 
and n > deg(a)-2deg(/3), then [a/f3J = L&m/3nJ. 

Now let M = m1 if Im1I >? m2I and M = m2 otherwise, so 

MI= max{Iml, Im21}. 

Similarly, set N = ni if In,I > rn2I and N = n2 otherwise. Also, let m = ? + 
deg(d) - deg(M) and n = ? + deg(d) - deg(N). Then 

ml (p-) + Mm2(W-C) IMI q- -m 

d ~~~< ~~q =q 

so , is an approximation of (, of precision m. Similarly, we obtain I v-G l < q. 
Lemma 8.1 guarantees that [t(/Jlv = Ltjl/vj provided 

lj? q-m and | qf 

A simple calculation shows that these conditions can be made independent of the 
denominator d and are equivalent to 

_ _ _ a 1 q< 
(8-1) .avj > and A 

l qb a2. -N 

Now let p,i and vi be the values of ,u and v after the i-th iteration of step 3 (a) of 
Algorithm 7.1. Then 

(>i (>i-i 1 (i- 
-1 

so 1j /1>v is the i-th partial quotient of the continued fraction expansion of 'O /(. 
Our computations indicate that these partial quotients satisfy a "Gauss-Kuz'min 
law for Puiseux series"; that is, they almost always have small degree, and frequently 
the degree is 0. We never encountered a partial quotient whose degree exceeded 
g - 1, where g is the genus of the field. 

To simplify conditions (8.1), suppose that a,/lavl = I4A4vj = q5, where s E N0 
is small. Then (8.1) is equivalent to 

(8.2) inip+n2wI > max{ MI,q`INI}q-6. 
Our computations show that the absolute values of the coefficients m1, M2, nl, 
and n2 are almost always significantly smaller that the theoretical bound of JA13/2 
obtained from the formulas in step 2 (c) of Algorithm 6.4 together with Theorem 
7.6; in fact, their degrees were always less than g. Since mmn2 -M2nfl = Id2N(a)I = 

IN(da)/dl < IAI/IdI by Corollary 4.6, we expect that IMI and q8lNj are usually of 
roughly the same size and not too large. This was once again confirmed by our 
computations, which always yielded deg(M) = s + deg(N) < 2g = (5- 4. It is a 
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simple matter to check in each iteration of step 3 (b) of the reduction algorithm 
whether (8.2) holds, and we found that the inequality was always satisfied. Similar 
inequalities can be derived and arguments made for the other quotients occurring 
in Algorithm 7.1. 

Note that it is possible to reduce the division with remainder of two truncated 
series to a division of a truncated series by just a polynomial by using formulas 
such as 

'6, _A-Br1, 

(vC 

where 

A = mlnlH + m2n2G, B = m mn2-M2n,, C = nlH + n2G. 

Then [(1/,vJ = [(A-B4v)ICJ, with an approximation i1v of precision deg(B) to qv, 
provided InI, I n2l < ICI, which we always found to be the case. Similar formulas, 
involving different values of A and C, but using the same B value, hold for the 
other quotients. Note that N(da) = dB/sgn(dB), so B is independent of the basis 
and need only be computed once per reduction. Furthermore, IBI < JAI/Idl < JAI 
by Corollary 4.6. We performed computations with both explicit division with 
remainder and the above formulas, and the division with remainder version of the 
algorithm turned out to be about 20 percent faster. 

In step 5 of Algorithm 6.4, we approximate ( = 2mo/d + 1 by 

= (2mo + a,,)/d. 

Then the principal part [Q of , can be computed as simply L(2mo - a,)/dj. 
This will always produce the correct polynomial, as 

1(,-(2mo + a,)/dl < max{Imim,lmIl}/ldl * q-3 < 1, 

since Idl > 1 and at this point Im1, Im21 < Iv' by Theorem 7.6. Similarly for (v. 

9. NUMERICAL EXAMPLES 

All our examples were done over prime fields k = FS, where p is a prime with 
p _-1(mod 3), and used monic polynomials G and H. Among many examples, 
we recomputed all of Mang's examples of unit rank 1 in [10]. Not surprisingly, we 
found that our regulator algorithm was significantly faster than our unit algorithm, 
due to the time-consuming polynomial arithmetic involved in updating On in step 
2 (b) of each iteration of Algorithm 6.4. 

The largest unit we computed was the fundamental unit e of K = F17( '-GH2) 
where G = t+4 and H = t4 +t3 + 11t2 +5t+ 12. Here e = eo +e1p+e2w, 
where deg(eo) = 1554, deg(e1) = 1551, and deg(e2) = 1552, so by Lemma 7.4, 
Ic = 171''4, a number of 3109 decimal digits. The period of e is 775. It took just 
under 15 CPU minutes to compute e. 

For the examples given in Table 1, we randomly generated monic polynomials 
G, H e Fp [t] so that deg(GH2) _ 0(mod 3), G and H are both squarefree, and 
gcd(G, H) = 1. Each row of the table specifies the prime p, the polynomials G and 
H, the period I of the fundamental unit C of K = Fp (t, GH2), the regulator R of 
K, and the CPU time required to compute R. 
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TABLE 1. Regulator Computations 

rp G jH [R JTime 
5 t + 4 t7 + t6 + t5 + 4t + 6387 6655 38.52 sec 

2t3 + t2 + t + 1 

5 t2 + t t5 +4t4+t3 +2t2 +4 743 770 3.80 sec 

5 t2 + 4t + 2 t8 +t7 +3t5 +3t4 + 57105 59501 8 min 13 sec 
3t3 + 2t2 + t + 2 

5 t3 + t2 + 4t + 1 t3 + 2t2 + 3t + 1 347 361 1.54 sec 

5 t4 + 3t3 + t2 + 2 t + 4 36 38 0.09 sec 

5 t'4 + t3 + 2t2 +3t+3 t' + t2 + 2t + 3 2834 2950 17.31 sec 
4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5 t5 +t ++3t3 +2t2 + t5+t4 +4t3 +4t2 +3 251783 262322 37 min 9 sec 
2t + 4 

11 t + 2 t'+7t3+9t2+9t+9 479 484 1.53 sec 

11 t + 4 t7 +4t6 + 2t+9t3 + 189893 191487 22 min 58 sec 
t2 + 4t + 10 

11 t2?+ 9t + 8 t2+ 5 21 22 0.05 sec 

11 t1+4t2 +7t+8 t3 2t2+t+1 855 870 3.97 sec 

11 tI + lOt2 + 2t + 6 t4+?2t3 + 1Ot2 +6t+ 122619 123718 15 min 7 sec 
6 

11 t5 + 2t'? + 8t3 + t2 + t2 + 4t + 8 61702 62204 8 min 45 sec 
t + 2 

17 t +1 ]t + 15t3 + 16t2 + 587 588 2.29 sec 
16t + 11 

17 t2 + 9t + 15 t2 + 3t + 3 45 46 0.1 see 

17 t3 + 9t2 + 12t + 2 t3 + 5t2 + 3t + 5 31987 32077 2 min 40 sec 

17 t + 15t3 + 12t2 + t + 3 892 894 3.38 sec 
14t + 6 

17 t0 + 3t4 + 13t3 + t2 + 6t + 3 562601 564510 58 min 3 sec 
15t2 + 7t + 13 _ _ 

23 t + 3 t4 + 3t3 + 17t + 13 1145 1146 4.20 sec 

23 t2 + 22t + 13 t2 + 17t + 22 93 94 0.25 sec 

23 t3 + 5t + 2 t3 + 22t2 + 2t + 2 102347 102553 8 min 42 sec 

23 t4 + 22t3 + 16t2 + t + 7 4251 4256 16.50 sec 
4t + 4 

23 t0 + 15t4 + 16t3 + t2 + 21t + 10 744378 745808 1 h 21 min 
16t2 + 4t + 16 ._ __ _ _ _ _ 

29 t2 + 24t + 14 t2 + 17t + 13 298 299 0.77 sec 

29 t3 + 24t2+ 12t + 24 t3 + 16t2 + lOt + 1 80008 80103 7 min 3 sec 

29 t4 +22t3+ 17t2+ 12 t + 5 8508 8520 33.62 sec 

29 t5 + 27t4 + 13t3 + t2 + 4t + 17 1483564 1485310 2 h1 44 min 
lOt2 + 23t + 3 i_ _ _ 
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TABLE 1. (Continued) 

I PIG IH I 1I RI Timel 
41 t2 + 23t + 26 t2 + 12t + 4 291 292 0.77 sec 

41 t4 + 14t3 + 42 + t + 28 24238 24248 1 min 37 sec 
3 7 t + 1 4_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

41 t3 + 30t2 +35t+9 t3+ 29t2 + 15t + 38 961413 962005 1 h 25 min 

71 t2 + 19t + 63 t2 + 29t.+ 66 550 551 1.50 sec 

71 t4?9t3+9t2+3t+ t+56 41058 41064 2min49sec 

71 t3 + 30t2 + 37t +2 t3 + 13t2 + 66t + 34 1408409 1408658 2 h 7 min 

89 t2+8t+56 t2+22t+67 1317 1318 3.87sec 
89 t4+23t3+50t2+ t+79 116511 116520 8minlsec 

6 7 t + 3 5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

107 t2 + 58t + 74 1t2+ 54t + 86 | 3862 3863] 11.98 sec 

| 197 t2 + 27t + 125 ]t2+ 65t + 158 [ 6525 6526 20.20 sec 

401 t2 + 51t + 400 ]t2+ 71t + 59 [ 26925 26926 1 min 24 sec 

797 t2 + 526t + 353 t2 + 765t + 687 [ 70680 70681 3 min 42 sec 

983 t2+15t + 279 t2 + 740t + 864 107574 107575 5 min 33Lsec 

We point out that for small genus and large field of constants, knowledge of the 
regulator sometimes uniquely determines the divisor class number h of the field, or 
at least narrows h down to only a few possible values. By (2.1), h is a multiple of 
R. We also have the inequality (' - 1)29 < h < (X/4 + 1)29, already used in the 
proof of Theorem 6.5. Usually, there are only a few multiples of R that fall within 
these bounds. For example, the last five examples in Table 1 each permit only 
three possible values for h. We plan to investigate the computation of a suitable 
approximation of h by means of truncated Euler products in a forthcoming paper. 
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